![]() |
||||||||
Since current conduction in a MWCNT(Multi-Walled Carbon Nano Tube) is known to be mostly confined to the outermost single-walled nanotube and since band gap of a SWCNT(Single-Walled Carbon Nano Tube) varies inversely with its diameter, MWCNTs are metallic in nature. SWCNTs can be either metallic or semiconducting depending on the way the roll-up of the graphene sheet occurs - an aspect termed as Chirality, and if all the roll-up types are realized with equal probability, 1/3 of the SWCNTs end up being metallic and 2/3 semiconducting. Thus, when CNTs are fabricated either by arc growth, laser ablation or chemical vapor deposition (CVD), a mixture of metallic and semiconducting nanotubes is formed.This carbon nanotubes can be used as light emitting semiconductors. (CNTFETs), which show promise due to their superior electrical characteristics over silicon based MOSFETs. Since the electron mean free path in SWCNTs can exceed 1 micrometer, long channel CNTFETs exhibit near-ballistic transport characteristics, resulting in high speed devices. In fact, CNT devices are projected to be operational in the frequency range of hundreds of GHz. Recent work detailing the advantages and disadvantages of various forms of CNTFETs have also shown that the tunneling based CNTFET offers better characteristics compared to other CNTFET structures. This device has been found to be superior in terms of subthreshold slope - a very important property for low power applications. promising in their own respects, there have been few efforts to successfully combine them in a realistic circuit. Most CNTFET structures employ the silicon substrate as a back gate. Applying different back gate voltages might become a concern when designing large circuits out of these devices. Several top-gated structures have also been demonstrated, which can alleviate this concern. Recently, a fully integrated logic circuit built on a single nanotube has been reported. However, this circuit also employs a back-gate. Additionally, there are still several process related challenges that need to be addressed before CNT-based devices and interconnects can enter mainstream VLSI process. This makes it an exciting and open field for research. Problems like purification, separation of carbon nanotubes, control over nanotube length, chirality and desired alignment, low thermal budget as well as high contact resistance are yet to be fully resolved. Although these are serious technological challenges, innovative ideas have been proposed to build practical transistors out of nano-networks. Since lack of control on chirality produces a mix of metallic as well as semi-conducting CNTs from any fabrication process and it is difficult to control the growth direction of the CNTs, random arrays of SWCNTs (that are easily produced) have been proposed to build thin film transistors. This idea can be further exploited to build practical CNT based transistors and circuits without the need for precise growth and assembly. submitted by
Roopesh - ECE 1/4
|
|
|||||||
![]() |